Rabu, 11 April 2012

Model Arsitektur Komputer




1.    Model Van Newman

Arsitektur Von Neumann adalah arsitektur komputer yang menempatkan program (ROM=Read Only Memory) dan data (RAM=Random Access Memory) dalam peta memori yang sama. Arsitektur ini memiliki address dan data bus tunggal untuk mengalamati program (instruksi) dan data. Contoh dari mikrokontroler yang memakai arsitektur Von Neumann adalah keluarga 68HC05 dan 68HC11 dari Motorola. 
Arsitektur Von Neumann menyediakan fitur penyimpanan dan modifikasi program secara mudah. Bagaimanapun, penyimpanan program tidak mungkin optimal dan membutuhkan berbagai pengumpulan program dan data untuk membentuk instruksi. Pengumpulan program dan data diselesaikan menggunakantime division multiplexing yang akan berpengaruh pada performa mikrokontroler itu sendiri.dari beberapa bahan yang telah dicari saya mencoba mengambil diagram von newman yang ini dan masih banyak lagi diagram yang ditemui.

cara kerja

Mikrokontroler yang menggunakan arsitektur ini hanya memiliki satu blok memori dan satu bus data 8-bit. Karena pertukaran data semuanya menggunakan 8 jalur ini, bus akan overload dan komunikasi menjadi sangat lambat dan tidak efisien. Sebaliknya CPU dapat membaca instruksi atau baca/tulis data dari/ke memori. Keduanya tidak dapat terjadi secara bersamaan karena data dan instruksi menggunakan sistem bus yang sama. Misalnya, jika sebuah baris program memerintahkan register memori RAM dengan nama “SS” harus dinaikkan satu (misalnya menggunakan instruksi: inc SS), maka mikrokontroler akan melakukan:
1.     Baca bagian dari instruksi program yang menyatakan APA yang harus dilakukan (dalam kasus ini adalah instruksi “inc” untuk perintah kenaikkan);
2.     Baca lebih lanjut dari instruksi ini yang menyatakan data YANG MANA yang akan dinaikkan (dalam kasus ini adalah register “SS”);
3.     Setelah dinaikkan, isi dari register ini harus dituliskan kembali ke register yang sebelumnya telah dibaca (alamat register “SS”).
keunggulan
pada fleksibilitas pengalamatan program dan data. Arsitektur Von Neumann memungkinkan prosesor untuk menjalankan program yang ada didalam memori data (RAM). Sebaliknya data juga dapat disimpan di dalam memori program (ROM).
Kekurangan
bus tunggalnya sendiri. Sehingga instruksi untuk mengakses program dan data harus dijalankan secara sekuensial dan tidak bisa dilakukan overlaping untuk menjalankan dua isntruksi yang berurutan. Selain itu bandwidth program harus sama dengan banwitdh data. Jika memori data adalah 8 bits maka program juga harus 8 bits. Satu instruksi biasanya terdiri dari opcode (instruksinya sendiri) dan diikuti dengan operand (alamat atau data).

2. Model hardvard

Arsitektur Havard menggunakan memori  terpisah untuk program dan data dengan alamat dan bus data yang berdiri sendiri. Karena dua perbedaan aliran data dan alamat, maka tidak diperlukan multiplexing alamat dan bus data. Arsitektur ini tidak hanya didukung dengan bus paralel untuk alamat dan data, tetapi juga menyediakan organisasi internal yang berbeda sedemikian rupa instruksi dapat diambil dan dikodekan ketika berbagai data sedang diambil dan dioperasikan. Lebih lanjut lagi, bus data bisa saja memiliki ukuran yang berbeda dari bus alamat. Hal ini memungkinkan pengoptimalan bus data dan bus alamat dalam pengeksekusian instruksi yang cepat. mikrokontroler Intel keluarga MCS-51 menggunakan arsitektur Havard karena ada perbedaan kapasitas memori untuk program dan data, dan bus terpisah (internal) untuk alamat dan data. Begitu juga dengan keluarga PIC dari Microchip yang menggunakan arsitektur Havard.

cara kerja

Mikrokontroler yang menggunakan arsitektur ini memiliki dua bus yang berbeda. Satu bus 8-bit dan menghubungkan CPU ke RAM. Yang lain terdiri dari beberapa jalur (12, 14 atau 16) dan menghubungkan CPU ke ROM. Dengan demikian, CPU dapat membaca instruksi dan mengakses memori data pada saat yang bersamaan. Karena semua register memori RAM lebarnya 8-bit, semua pertukaran data dalam mikrokontroler menggunakan format yang sama, sehingga selama eksekusi penulisan data, hanya 8-bit yang diperhatikan. Dengan kata lain, yang perlu Anda perhatikan saat merancang program adalah lebar data yang bisa dipertukarkan atau diproses hanya selebar 8-bit, ya hanya selebar 8-bit saja.
Program yang Anda buat untuk beberapa mikrokontroler ini akan tersimpan di dalam ROM internal (Flash ROM) setelah dilakukan kompilasi ke bahasa mesin. Lokasi memori ini dinyatakan dalam 12, 14 atau 16-bit. Sebagian dari bit, 4, 6 atau 8-bit digunakan sebagai instruksinya sendiri dan diikuti dengan data 8-bit.

keungulan dan kekurangan
  • Semua data di dalam program selebar 1 byte (8-bit). Karena bus data yang digunakan dalam pembacaa program memiliki beberapa jalur (12, 14 atau 16), instruksi dan data dapat dibaca dibaca sekaligus. Dengan demikian, semua instruksi dapat dieksekusi hanya dengan satu siklus instruksi, kecuali instruksi lompat (jump) yang dieksekusi dalam dua siklus.
  • Kenyataan bahwa program (ROM) dan data sementara (RAM) terpisah, CPU dapat mengeksekusi dua instruksi sekaligus. Gampangnya, selama proses pembacaan dan penulisan RAM (akhir dari suatu instruksi), instruksi berikutnya dibaca melalui bus yang lain.
  • Jika menggunakan mikrokontrole menggunakan arsitektur Von-Neumann kita tidak bisa tahu seberapa banyak memori yang dibutuhkan oleh beberapa instruksi. Pada dasarnya, masing-masing instruksi program membutuhkan dua lokasi memori (satu mengandung instruksi APA yang harus dilakukan, sedangkan sisanya mengandung informasi data YANG MANA akan diproses).



0 komentar:

Posting Komentar